书架
学霸从改变开始
导航
关灯
护眼
字体:

第425章 此陈非彼陈

『如果章节错误,点此举报』
第(1/3)页
  哥德巴赫猜想最初指的是,任一大于2的整数,都可以写成三个质数之和。

  后来,因为现金数学奖,已经不使用“1也是素数”这个约定。

  原初猜想的陈述,也就变为了,任一大于5的整数,都可写成三个质数之和。

  至于,现如今常见的猜想陈述,则是欧拉在给哥德巴赫的回信中,所提出的等价版本。

  也就是,任一大于2的偶数,都可写成两个质数之和。

  这里面的等价转换,就很简单了。

  从n>5开始考虑。

  当n为偶数,n=2+(n-2),n-2也是偶数,可以分解为两个质数的和。

  当n为奇数,n=3+(n-3),n-3也是偶数,可以分解为两个质数的和。

  这也被称为“强哥德巴赫猜想”,或者“关于偶数的哥德巴赫猜想”。

  陈舟边思考,边在草稿纸上,记录一些必要的内容。

  对于数学猜想的研究,猜想的表述,猜想的公式化。

  是最开始,也是最重要的一步。

  习惯性的拿笔点了草稿纸一下,陈舟在草稿纸中间空了一截,然后划了一条横线。

  横线下方,陈舟写了“弱哥德巴赫猜想”七个字。

  然后,陈舟继续在草稿纸上,写了一些关于弱哥德巴赫猜想的内容。

  所谓的“弱哥德巴赫猜想”,是从“强哥德巴赫猜想”推出来的。

  其陈述为“任一大于7的奇数,都可以写成三个质数之和”。

  至于“强弱之分”,则是“强哥德巴赫猜想”成立的话,那“弱哥德巴赫猜想”必然成立。

  相对的,两者的难度,也不一样。

  在2012年到2013年,秘鲁数学家哈洛德·贺欧夫各特发表了两篇论文,宣布彻底证明了弱哥德巴赫猜想。

  而后,贺欧夫各特的同事,也用计算机验证了这一证明过程。

  所以,由强哥德巴赫猜想而来的弱哥德巴赫猜想,最终还是先一步被解决了。

  而强哥德巴赫猜想的最新研究成果,则还停留在1973年,陈老先生所发表的关于“1+2”的详细证明上。

  在这之后,强哥德巴赫

(本章未完,请翻页)